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Abstract. With the development of urban transportation networks, the flow of
people in cities generally shows the characteristics of concentration, periodicity
and irregularity, and a typical example is rush hour. For most existing taxi-hailing
apps, users frequently queue up for a relatively long time during rush hour and
may even fail to get orders taken due to various factors. To solve this problem, we
propose a users’ departure time prediction model based on Light Gradient Boost-
ing Machine (TP-LightGBM), which will remind users to book taxis before their
journeys. As we know, TP-LightGBM may be the first model for departure time
prediction. We uncover that travel behavior patterns vary under different external
conditions through statistics and analysis of users’ historical orders from multi-
ple perspectives. Furthermore, we extract multiple features from these orders and
select the favorable features by calculating their information gain as the input of
TP-LightGBM to predict users’ departure time. Therefore, our model can provide
users with the recommendations of the best departure time if they need them. The
final experimental results on our datasets indicate that TP-LightGBM has more
excellent performance with great stability in predicting user departure time than
other baseline models.

Keywords: Departure time prediction · Light gradient boosting machine · Data
analysis · Feature engineering · Loss assessment

1 Introduction

The accelerating development of Smart City has put forward new requirements for Intel-
ligent Transportation System and Smart Travel, and the big data on travel provides
strong support for related researches. As an essential part of intelligent travel, accurate
travel time prediction is crucial. Specifically, user departure time prediction refers to
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data mining from numerous users’ historical travel records to predict where and when
users may have travel plans, so as to timely remind them to arrange travel or book taxis
in advance. As users cannot grasp the specific information of actual traffic flow, it is
difficult to reasonably choose the departure time and travel modes, which is the crux of
contradiction and is also one of the main problems to be solved in Smart Travel.

At present, the increasingly severe traffic jam causes great inconvenience to peo-
ple’s daily travel, especially at some specific time such as the rush hour. Due to the
diversity of individual travel behavior and the complexity of traffic information, the
model of departure time prediction based on historical travel reports cannot always be
accurate. At present, there are few works about users’ departure time prediction. While,
the existing relevant models are passive statistical models, which passively predict the
future through the statistics of actual historical data and analyzing their patterns. The
insufficient information on future travel rein in the performance of models, which leads
to that such models can not consistently maintain high prediction accuracy. However,
the time prediction models based on deep learning require a large amount of data and
complex calculations. Although they can achieve sound prediction effects, it is difficult
for these models to guarantee real-time performance when many users are online.

Therefore, a users’ departure time prediction model based on Light Gradient Boost-
ing Machine (TP-LightGBM) is proposed in this paper. TP-LightGBM can be used to
remind users to arrange travel and to book taxis in advance within a reasonable time.
The prediction results can help users choose their optimal departure time and travel
patterns more freely to reduce information delay, and also can avoid congestion and
significantly improve the quality and efficiency of users’ travel. Of course, whether to
provide relevant services is determined according to users’ requirements on the recom-
mendations of the best departure time.

2 Related Works

Users’ departure time prediction is a necessary function of intelligent transportation and
is also an essential part of intelligent city construction. With the rapid development of
Intelligent Traffic Systems (ITS), various machine learning algorithms have contributed
to traffic data reconstruction, traffic flow prediction, urban traffic pattern mining, and so
on.

There are many methods to predict travel time in previous works, most of which
focus on the travel time prediction of vehicles on the road to assist traffic control, yet
few works are about users’ departure time prediction. For example, Chien et al. pro-
posed a prediction model of bus arrival time based on an artificial neural network by
using the data of trajectories and bus stops [6]. This model for arrival time and loca-
tion prediction combines an artificial neural network, and Kalman filter [4]. It estimates
the arrival time and updates the real-time locations of vehicles according to the data of
automatic passenger counters. In addition, many other works focusing on the prediction
of the travel time of vehicles on the road make it more convenient to analyze the traf-
fic flow [1,18,20]. For example, combined with Decision Tree and Linear Regression,
future highway travel time can be predicted based on flow and occupancy data [13].
Besides, to solve the problem that the travel time is just a simple addition of link time,
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the data for modeling is path-based rather than link-based [3]. Meanwhile, the Kalman
filter is introduced, and through continuous updating state variables as the new obser-
vation variable to predict the traffic on the motorway driving time [7]. As to particular
unpredictable events, a Bayesian dynamic linear learning model [10] was proposed,
which could adjust the parameter settings and noise level adaptively.

The rising Machine Learning and Deep Learning methods in recent years shed light
on a new way to predict travel time. Duan et al. established an LSTM network for
each link [9], which verified the prospects of the deep learning model considering the
time-series relationship in travel time prediction. In addition, Gradient Boosting Deci-
sion Tree (GBDT) is applied to analyzing and modeling the travel time of highway
vehicles [21] and discussing the impact of different parameters on the model’s perfor-
mance. Gradient Boosting Tree(GBT) is a boosting method based on the weak learner
of tree model [14] pertaining two typical usages as Gradient Boosting Decision Tree
(GBDT) and Gradient Boosting Regression Tree (GBRT). GBDT can be applied to the
prediction [5,8,19] and classification [17] problems, and it can effectively merge dif-
ferent types of variables and fit complex nonlinear relationships. However, rather low
efficiency is always a demerit of GBDT, especially with large-scale features and big
data. For this problem, a gradient-based unilateral sampling method [12] is offered
using the information gain of samples with larger gradients to estimate the overall
information gain to improve efficiency with little compromised accuracy. Meanwhile,
a feature selection method based on artificial bee colonies and GBDT was presented in
[16], which globally optimized the feature space to enhance the efficiency and quality.
Besides, Light Gradient Boosting Machine (LightGBM) [12] downsizes the features by
bundling mutual exclusive features and downs sample the data instances by keeping
all instances with big gradients and randomly sampling instances with small gradients,
which reduces the number without changing the distribution of original data by much.

In summary, to improve the performance of individual travel time prediction, we
introduce the LightGBM to predict the user’s departure time based on the historical
taxi orders of Didi Chuxing’s users. More specifically, we have trained a model with
individual characteristics for each user based on his/her historical orders of Didi Chux-
ing, which will remind users to book a taxi in advance before needed. And experiments
prove that our model is not sensitive to the independence between diverse features and
can correctly fit complex feature relationships.

3 The Analysis of Users’ Departure Time and Travel Behaviors

3.1 The Overall Information of Users’ Historical Taxi Orders

In this section, we analyze the users’ historical taxi orders from multiple perspectives
and visualize the results of the data analysis. The dataset used in this paper is the his-
torical taxi orders of users who used Didi Chuxing online taxi-hailing platform, and
the information of each sample mainly includes the user ID, order ID, time, locations,
date attribute, and so on. Where, time (Notation as T ) is the specific time of a day, and
has been processed into the form of periods with hourly granularity. The range of T is
in [0, 23). Besides, we also transform the original time into a day of the week (Nota-
tion as W), so a type of time-series data can be used to mine the regularity of users’
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travel behaviors, and the range of W is in [0,6]. Each location name is mapped to a
corresponding pair of longitude and latitude. The range of the longitude (Notation as
Lng) is in [−180, +180], and the range of Latitude (Notation as Lat) is in [−90, 90].
The attribute values of the date (Notation as D) can be 0 or 1, and 1 stands for work-
ing days while 0 stands for holidays. In addition, all the orders have been anonymized
and aggregated, and we correct the latitude and longitude of all locations and delete
historical orders with abnormal order status.

3.2 The Analysis of Users’ Travel Behaviors

Users’ travel time shows noticeable regularity in a certain period. For example, users
have a relatively regular commute time on weekdays and leisure time to go out on
holidays, and even have regular travel times at several certain workplaces. Therefore,
it is suitable for us to estimate the users’ departure time using their historical orders.
Users’ travel behavior also shows strong regularities in the spatial domain. The follow-
ing discussion is only a starting point, and we can draw similar conclusions in terms
of destination. The spatial distribution of historical orders shows strong sparseness and
concentration. Most of the starting points are concentrated in certain areas, while some
others only appear once.

Moreover, we discover that users’ travel time shows strong regularity in the spatial
domain. The users’ departure time in some places may concentrate on one specific time
period. In addition, there are more cases of calling taxis in similar places in a similar
time period, although there have been some effects of departure time on different start-
ing points. For example, the users’ taxi-hailing locations may be primarily residential
areas in the morning, while workplaces, commercial areas, and entertainment venues at
night.

The analysis result above is drawn from users’ historical orders and reveals some
commonalities in users’ taxi booking behaviors: (1) The taxi-hailing time distribution of
the same user tends to show a concentrated distribution in specific locations and times
rather than a uniform distribution. (2) Most users have distinct travel patterns between
workdays and holidays, and there are differences in users’ departure times when the day
type changes. (3) The same user tends to set the same destination in a certain period and
rarely book a taxi in other periods. (4) Most users tend to go to a certain place within a
fixed time.

3.3 Feature Selection

Feature selection plays a vital role in feature engineering. Due to the limited samples
and the sparsity of distribution of users’ historical orders, we use as few features as pos-
sible to predict users’ departure time so as to avoid the high computational complexity
and performance degradation of models caused by large-scale features. We list several
candidate features which affect users’ travel time, as shown in Table 1.
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Table 1. Information gain (ratio) of each feature.

Feature IG IGR

Origin longitude 1.93 0.47

Origin latitude 1.92 0.47

Destination longitude 1.71 0.43

Destination latitude 1.81 0.33

Date attribute 0.11 0.14

Day of the week 0.55 0.42

Furthermore, we apply the feature selection method based on the Decision Tree.
More specifically, we calculate the Information Gain (IG) and Information Gain Ratio
(IGR) of each feature (see Table 1), which are respectively used in the module of ID3
[14], and C4.5 [15]. The methods to calculate IG and IGR are stated below:

Assume that the dataset is D, which has the size of |D|. The samples in D are
divided into K categories Ck(k = 1, 2, ...,K), and there are |Ck| samples in class Ck.
Then we assume that feature A can take n different values a1, a2, ..., an, which can
divide D into n subsets D1,D2, ...,Dn, and |Di| (i = 1, 2, ..., n) is the number of
samples in Di. In addition, let Dik denotes the sample set of category k in subset Di,
and its size is denoted by |Dik|. Thus, the information gained can be written as

g(D,A) = H(D)− H(D|A) (1)

where, H(D) is the empirical entropy of D, and H(D|A) is the empirical conditional
entropy of feature A to dataset D, H(D) is calculated by

H(D) = −
K∑

k=1

|Ck|
|D| log2

|Ck|
|D| (2)

and H(D|A) is

H(D|A) = −
n∑

i=1

|Di|
|D|

K∑

k=1

|Dik|
|Di| log2

|Dik|
|Di| (3)

The information gain ratio can be calculated by gR(D,A) = g(D,A)
HA(D) , where HA(D)

is the entropy of the dataset D for feature A:

HA(D) = −
n∑

i=1

|Di|
|D| log2

|Di|
|D| (4)

If the feature has a more significant Information Gain (Ratio), it will be more influ-
ential for classification and have a stronger ability to classify the samples. From the
results in Table 1, IG and IGR of date attributes are both the smallest and should be dis-
carded, while others should be retained in principle. However, the users’ destinations
are normally unknown in the actual scenario. If we first predict the destination and then
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the departure time according to the attribute of date, the cost will inevitably arise, and
the accuracy cannot be guaranteed. Moreover, time features are weighty in the travel
prediction. As we analyzed before, the feature day of the week contains information of
regularity. Therefore, we decide to retain the attribute of date and day of the week and
then elide the longitude and latitude of the destination. The experiments also demon-
strate that the outcome using four features of origin longitude, latitude, day of the week,
and date attribute is sounder than the origin longitude and latitude alone.

4 Time Prediction Model for Predicting Users’ Departure Time

Through the in-depth analysis of orders of Didi Chuxing users, we convert users’
departure time prediction into a multivariate classification problem. Users are classi-
fied according to their objective features using the category label of departure time. We
use the hourly granularity as the classification standard and divide the users’ historical
orders into 24 categories.

4.1 Model Description

The probability of a user traveling at a fixed time period can be expressed in the form
of conditional probability using Bayes’ theorem:

P (T = ti|X) =
P (X|T = ti)P (T = ti)∑24
i=1 P (X|T = ti)P (T = ti)

(5)

where X = Lng, Lat,D. The process of solving the conditional probability P (X|T =
ti) is extremely complicated, but the calculation difficulty will be greatly reduced if
the method of conditional independent assumption of features in the naive Bayes algo-
rithm is adopted, i.e. P (X|T = ti) = P (Lng|T = ti)P (LatT = ti|)P (D|T =
ti)P (W |T = ti).

However, the features extracted from actual data are not as independent as the ideal
assumption. Specifically, the latitude Lat and longitude Lng in the users’ historical
orders always emerge in pairs. For example, if location A often appears in one user’s
historical orders, then the latitudeLatA and longitudeLngA of locationA have a highly
correlated relationship, which does not meet the premise of conditional independence
of each feature in the Naive Bayes algorithm. Moreover, taxi-hailing actions are purely
personal behaviors, and regularity and irregularity coexist. The time distribution of taxi
rides of a sample user may be evenly distributed throughout a day, which would con-
found the final prediction. Therefore, Gradient Boosting Decision Tree (GBDT) [11]
is a suitable method for users’ departure time prediction due to less demanding input
features. However, the performance is unsatisfactory when the size of the data balloon.
To balance this drawback, we introduce Light Gradient Boosting Machine (LightGBM)
[12] which has an excellent performance to deal with a large number of data instances.
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4.2 Departure Time Prediction Based on Light Gradient Boosting Machine
(TP-LightGBM)

Decision Tree [14] is a primary classification and regression method, and its classifica-
tion rules can be seen as a grouping of a series of if-then conditional statements or as a
conditional probability model defined on features and class space. GBDT is a boosting
algorithm based on the Classification and Regression Tree (CART) [2] and is one of the
most widely used classification algorithms with high precision. Its main idea is to fit the
residual of the previous base learner through the negative gradient of the loss function
so that the residual estimation of each round declines. GBDT combines Gradient Boost-
ing and Decision Tree to establish a new decision tree model (weak classifiers) in the
gradient direction of the previous model residual reduction at each iteration. Finally, a
well-trained GBDT classification model is a linear combination of these weak classifiers
with different weights. The conventional implementation of GBDT is scanning all the
instances for every feature to locate the optimal split points, which is time-consuming
with big data. LightGBM based on GBDT proposes two techniques: Gradient-based
One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) to reduce compu-
tational complexities. GOSS downsizes the instances by keeping them with large gradi-
ents and randomly chooses instances with slight gradients. EFB decreases the features
by bundling mutually exclusive features.

The training process of multi-class LightGBM can be viewed as an additive model,
as shown in Algorithm 1. In practice, the multi-class LightGBM generates a tree for
each category during the training process, i.e., a total of K ×M sub-trees are generated
in Algorithm 1, and Softmax obtains the final category result. Specifically, the loss
function we choose is log-likelihood, which can be written as

L(y, f(x)) = −
K∑

k=1

yklog(pk(x)) (6)

where y denotes the actual value of a sample, f(x) is the predictive value, pk(x) repre-
sents the probability that the sample belongs to the category k.

5 The Experimental Results and Analysis

Due to the coexistence of regularity and uncertainty in user travel, we delete orders
whose starting point appeared less than five times in a month. Since each user’s travel
pattern is unique and it is impossible to select every user who travels regularly, we set
a threshold τ to filter the prediction results. The result will be output if its probability
surpasses the threshold τ . Our purpose is to predict the period for taxi-hailing of the
users of Didi Chuxing and does not involve a specific timestamp. Therefore, we take
the prediction time as the midpoint to extend one hour as a period for the final result,
i.e., so the final result will be expressed in [t − 1, t + 1] if the output result is t, and the
actual label of a test sample is regarded as a correct prediction if falls within the interval
[t − 1, t + 1].
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Algorithm 1: The training process of GBDT classifier
Input: iterations (number of weak classifiers) M,number of samples N,
number of categorise K,loss function L(y, f(x)),training set
Ttrain = {(x1, y1), (x2, y2), . . . , (xN , yN )}
Output: GBDT classifier f̂(x)

1 Initialize:weak classifier f0(x) = arg min
θ

∑N
i=1 L(yi, θ);

2 while m = 1, 2, . . . , M do
3 for i = 1, 2, . . . , N do
4 for k = 1, 2, . . . , K do
5 // Calculate the probability of xi ⊆ class k

6 pk(xi) =

[
exp(fk(xi))

∑K
k=1 exp(fk(xi))

]

fk(x)=fk,m−1(x)

;

7 // Calculate negatice gradient error

8 rmik = −
[

∂L(yi, f(xi))

∂f(xi)

]

fk(x)=fk,m−1(x)

= yik − pk(xi);

9 end
10 end
11 // Fit the decision tree
12 use rmik to fit the decision tree, which leaf node area is Rmjk,
13 j = 1, 2, . . . , J, k = 1, 2, . . . , K;
14 // Estimate the gain of leaf nodes
15 for j = 1, 2, . . . , J do
16 for k = 1, 2, . . . , K do

17 θmjk =
K − 1

K

∑

xi∈Rmjk

rmjk

∑

xi∈Rmjk

|rmjk| (1 − |rmjk|) ;

18 end
19 end
20 // Update classification tree

21 fkm(x) = fk,m−1(x) +
∑J

j=1 θmjkI(xi ∈ Rmjk), k = 1, 2, . . . , K;

22 end
23 // Output GBDT classifier

24 f̂k(x) = fkM (x) =
∑M

m=1

∑J
j=1 θmjkI(xi ∈ Rmjk), k = 1, 2, . . . , K;

5.1 Experimental Setups

We randomly select 80% of the dataset as the training set and the other 20% as the test
set, then multiple experiments are conducted using our model under different thresh-
olds, and the results are shown in Fig. 1. We apply two metrics PDP = Nout/Ntest and
AUC = Nauc/Nout to measure the performance of the model. Where Ntest denotes
the number of samples in the test set, Nout is the number of samples with the out-
put results, and Nauc denotes the number of samples accurately predicted. It can be
seen that AUC and PDP are proportional and inversely proportional to the threshold
τ respectively, and the growth rate of AUC slows down, but PDP still has a strong
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downward trend when τ > 0.7. Therefore, we finally adopt the threshold τ = 0.7 to
test our model’s all-around performance.

Fig. 1. An example of indirect blocking

5.2 Experimental Results and Comparative Analysis

In order to verify the superior performance of our model, GBDT, XGBoost, Multinomi-
alNB, GaussianNB, BernoulliNB, and ModeMod are used as the comparison models.
PDP , AUC, Kappa, Hamming(H) and Time(T ) in Table 2 are used as the metrics
of model performance evaluation. Here, Hamming and Time respectively represent
Hamming distance and average time consumption of the models. Kappa (Kappa coef-
ficient) is often used to evaluate prediction accuracy and consistency, and it can be
defined as Kappa = (po − pe)/(1− pe). Where po is the sum of the number of samples
correctly classified in each category divided by the total number of samples, and pe is
the sum of the products of the actual and predicted sample numbers corresponding to
all categories divided by the square of the total number of samples. Therefore, the pre-
diction accuracy is positively correlated with the value of Kappa. Hamming distances
measure the distance between the predicted label and the actual label. Thus, the predic-
tion accuracy is negatively correlated with the value of Hamming distance. It needs to
be stated that all metrics in Table 2 are the average values obtained from all test samples.

From Table 2, It can be seen that ModeMod has the most promising performance in
terms of PDP and Time metrics. ModeMod searches for orders that match the user’s
current status from the historical taxi-hailing orders and extract the departure times that
meet the conditions. Then the departure time with the most occurrences is the predicted
value. In this way, ModeMod shows the best stability and the lowest time complexity.
In addition, the naive Bayes models (MultinomialNB, GaussianNB, and BernoulliNB)
have a higher prediction accuracy than ModeMod. However, as we mentioned before,
the conditional independence relationship between each feature is hard to achieve, and
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Table 2. Experimental results on different models.

PDP AUC Kappa H T (s)

TP-LightGBM 0.35 0.90 0.64 0.14 0.22

GBDT 0.33 0.87 0.58 0.16 0.74

XGBoost 0.33 0.88 0.62 0.17 0.51

MultinomialNB 0.84 0.54 0.16 0.44 0.107

GaussianNB 0.61 0.30 0.23 0.70 0.10

BernoulliNB 0.74 0.55 0.24 0.45 0.10

ModeMod 1.00 0.37 0.30 0.63 0.09

the distribution of features is difficult to determine. In contrast, the evaluation param-
eters of PDP , AUC, Kappa, and Hamming are much better than the set of naive
Bayes models, although the set of GBDT models has the highest time consumption,
which TP-LightGBM can solve. In conclusion, TP-LightGBM only serves about 35%
of orders, but the prediction accuracy has reached 92%. The main idea of TP-LightGBM
is that the GBDT algorithm requires multiple iterations to fit data and train different
weak classifiers, so it has a higher time consumption, but the average prediction time
for each order can still be restrained within one second.

6 Conclusion and Future Work

Users’ departure time prediction is an application of Machine Learning to Smart City
construction. Accurately predicting users’ departure times can remind them to call a
taxi in advance and avoid queuing up during the rush hour. In this paper, we conduct
a multi-perspective analysis and pattern discovery on the historical taxi orders of Didi
Chuxing’s users and verify the possibility of using these orders to predict departure
time. Moreover, we propose such a model based on LightGBM using the users’ current
location, the order of the day of the week, and the date attribute. Finally, the experi-
mental results indicate the superior performance of TP-LightGBM in predicting users’
departure time. However, our model can only serve about 35% of orders. Thus, improv-
ing the prediction probability and expanding the service volume become the focus of
our future research.
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